
Towards an Aspect Weaving BPEL engine ∗

Carine Courbis
University College London

Department of Computer Science
Adastral Park - Martlesham

IP5 3RE, UK

carine.courbis@bt.com

Anthony Finkelstein
University College London

Department of Computer Science
Gower Street, London

WC1E 6BT, UK

a.finkelstein@cs.ucl.ac.uk

ABSTRACT
This position paper proposes the use of dynamic aspects and
the visitor design pattern to obtain a highly configurable and
extensible BPEL engine. Using these two techniques, the
core of this infrastructural software can be customised to
meet new requirements and add features such as debugging,
execution monitoring, or changing to another Web Service
selection policy. Additionally, it can easily be extended to
cope with customer-specific BPEL extensions. We propose
the use of dynamic aspects not only on the engine itself
but also on the workflow in order to tackle the problems of
Web Service hot deployment and hot fixes to long running
processes. In this way, composing a Web Service ”on-the-fly”
means weaving its choreography interface into the workflow.

Keywords
BPEL engine, dynamic aspect, visitor design pattern, Web
Service, SOA.

1. INTRODUCTION
Increasingly, applications are built from existing compo-

nents or services at a coarser-grain level than manipulating
classes. The advantage of using Web Services in comparison
to components is to enable the development of loosely cou-
pled distributed business applications that are highly inter-
operable and cross organisational boundaries. This paradigm
is called Service-Oriented Computing1 (SOC). There is a
fundamental shift toward a Service-Oriented Architecture
(SOA) supported by the use of standards: WSDL (Web
Service Description Language) to describe the business in-
terfaces of the services (i.e. the contracts), UDDI (Universal

∗This research is supported by the Generative Software De-
velopment project funded by BT Exact.
1The first international conference on
SOC has just taken place in Italy (see
http://www.unitn.it/convegni/icsoc03.htm).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The Third AOSD Workshop on Aspects, Components, and Patterns for In-
frastructure Software (ACP4IS)March 2004, Lancaster, UK
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Description, Discovery and Integration) to publish and dis-
cover them, and SOAP (Simple Object Access Protocol) to
exchange messages between them, independently of the un-
derlying communication protocol.

With Web Services, there is a layer of abstraction above
the components that makes it possible to integrate a wide
variety of incompatible systems (interoperability) to build
an application. This layer of abstraction is often called the
orchestration layer. The most well established orchestration
technology for Web Services is BPEL (Business Process Ex-
ecution Language) [1], originally created by BEA, IBM, and
Microsoft, and currently submitted for standardisation to
the OASIS consortium. This XML-based language is rather
small [10] but sufficient to handle variables with scopes,
loops, conditional branches, synchronous and asynchronous
communications, concurrent activities with correlated mes-
sages, transactions, and exceptions. With this language, a
business process can be described by gluing different Web
Services together, creating a new Web Service. This process
description is interpreted by a BPEL engine.

In our view, the BPEL engine should be minimal but easy
to configure and extend to cope with new requirements and
features. But orthogonal functionalities such as execution
monitoring do not need to be enabled at each BPEL inter-
pretation as they are themselves performance-inefficient. Se-
lecting Web Services is another example of a possible adap-
tation. Instead of choosing at design or deployment time
which Web Service to use, the engine can choose one at
runtime, in accordance with specified criteria, on the first
occasion the service is invoked.

As BPEL is an extensible language (that is new instruc-
tions can be used in a process description to cope with user-
specific needs), its engine also needs to be extensible to inte-
grate new behaviours for user-specific instructions. To build
a flexible BPEL engine, we uses two techniques: Aspect-
Oriented Programming (AOP) [7] and the visitor design pat-
tern [5, 12]. By using these techniques, the engine can be
extended both statically2 by inheritance and dynamically by
aspects.

We intend to apply dynamic aspects not only to the en-
gine itself but also to the BPEL process to tackle the prob-
lems of Web Service hot deployment and hot fixes to long
running processes. For example, it can be useful to add
an unforeseen Web Service at runtime. We have also been
investigating a specific case in which services are used to
support a large Grid-based computational chemistry appli-
cation. In this application, there is a need for steering, in

2Dynamically, if the engine supports dynamic class loading.

other words changing the end of the workflow depends upon
results identified in earlier stages.

Our BPEL engine will manipulate different types of as-
pects; it can be seen as an aspect weaver that orchestrates
Web Services.

The aim of this paper is to explain how such an adaptable
BPEL infrastructure engine can be created taking advantage
of the visitor design pattern and dynamic aspects. It is
organised as follows. Section 2 presents a brief overview of
related work. Section 3 describes the design of our BPEL
engine. We conclude the paper in Section 4.

2. RELATED WORK
It is important that ”systems infrastructure”software such

as application servers, virtual machines, middleware, com-
pilers, and operating systems be open and adaptable. Oth-
erwise no user-specific feature or requirement can be added
after implementation time. To integrate new functionalities
requires redevelopment of the whole software. For example,
Gilad Bracha et al have developed their own Java compiler
to create a superset of the Java programming language, GJ,
with generic types and methods [4]. It was not possible
to adapt the Java compiler to cope with this language ex-
tension. Other examples are the VM-based runtime MOPs
(Meta-Object Protocols) such as Guaraná [11] that have de-
veloped their own JVM (Java Virtual Machine) to intercept
operations at runtime (with a VM-based solution, the pas-
sage from the base level to the meta level is invisible to the
programmer).

One solution to build more adaptable system infrastruc-
ture software is to use dynamic aspects. They are appro-
priate for run-time adaptations in service architectures [15]
and more precisely as hot fixes. By contrast with static as-
pects such as the ones used in AspectJ [6], dynamic aspects
can be woven or unwoven into/from a program ”on-the-fly”.
Sato et al present [16] a good introduction to dynamic AOP.
They also describe their dynamic weaver, Wool, that is a hy-
brid of two aspect implementation approaches. At runtime
and on demand, it either embeds hooks into a class for ex-
ecuting the advices and reloads it into the JVM, or inserts
hooks as breakpoints into the JVM. At least two dynamic as-
pect systems, JAC [14] and Handi-Wrap [3], use static code
translation on the byte-code, statically inserting the hooks
at all the potential join points. Using aspects on SOAs will
make it possible, for example, to check constraints (design
by contracts), such as the ones proposed in the Web Service
Offerings Language (WSOL) [18], or to monitor the execu-
tion with agents.

Using design patterns when implementing systems make
them more flexible. In the case of interpretors, the visitor
design pattern is very often chosen. Recently, this pattern
was used, for example, to implement Joeq [19], a virtual
machine and compiler infrastructure.

The existing service description languages and Web Ser-
vice flow languages address business process dynamics and
non-functional properties poorly. For example, in the cur-
rent BPEL version, it is not possible to add on demand or
replace a Web Service (a partner) at runtime; the workflow
needs to be stopped to be adapted. The idea of using aspects
for dynamic workflow adaptations or execution controls has
been outlined in [2]. With aspects, new activities can be
added or replaced, the control flow modified, the policy res-
olution to assign resources to activities changed or extended,

and resource invocations replaced.
To address the problem of dynamic selection and compo-

sition of Web Services, DAML-S [9], an ontology of services,
proposes the use of semantic descriptions. These descrip-
tions will then be manipulated by different agents or soft-
ware such as a semi-automatic composer of Web Services
[17]. With the latter, compositions on demand are based
on semantic descriptions and are validated by human con-
trollers. Daniel Mandell and Sheila McIlraith describe in [8]
how to augment BPEL with Semantic Web technology.

3. AN OPEN, EXTENSIBLE, AND CONFIG-
URABLE BPEL ENGINE

To have more flexible BPEL processes, we have chosen to
design and implement an open, extensible, and configurable
BPEL interpreter. Its core logic will be rather small as the
language does not contain many instructions, but we plan
to enrich it with new features such as:

• To easily extend or modify its behaviour;

• To select or replace Web Services after deployment
time;

• To plug or unplug aspects in/from the engine on de-
mand;

• To hot-fix the workflow; for example, to compose on
demand new Web Services;

The advantages of these features and how we plan to imple-
ment them are now presented. At this end of this section,
we also briefly put together the architecture technical details
of our language interpreter.

3.1 Engine behaviour extension or modifica-
tion

BPEL is a language that can be extended with new user-
specific instructions such as launching an executable, or re-
placing a Web Service. This means that its engine needs to
be easy to extend. Also it would be useful to have the capa-
bility to modify the engine behaviour to take into consider-
ation user-specific requirements. The visitor design pattern
meets these requirements as it separates the data structures
and the semantics. The behaviour of each BPEL element is
represented as a visit method and the set of these methods
contained in a class (the visitor). As the engine code will be
modular, it will be easy to understand, maintain, extend by
inheritance, and modify by visit method overridings.

3.2 Selection and replacement of Web Services
Selecting a Web Service can depend on different criteria

and constraints: QoS (Quality of Service), price, the result
of a request, the trust you have in the provider, etc. In
the well-known Web Service example, the travel agency, the
selection policy for the airline company can be to take the
lowest fare from London to Morocco at Christmas time, or
the quickest trip without a stop, or to take British Airways
for the frequent flyer points. To find the lowest fare, each
airline company needs to be invoked; the selection policy can
be a minimal business process. Each partner (Web Service)
involved in a business process can have a different selection
policy. The selection may be performed at runtime on the
first occasion the service is invoked or at replacement re-
quest, not at design or deployment time. We plan to accept

one selection policy per partner and a generic one if none
is provided. This policy will be used at runtime by the en-
gine to select, from an UDDI registry, a Web Service that is
signature and constraint compliant.

There is also a need to be able to replace, at runtime, a
Web Service that is slow, unresponsive, or no longer useful
for the current iteration. In this way, the workflow can be
adapted to improve performance or QoS, to avoid termina-
tion because there is no answer from one partner, and to use
another similar service in a loop or on user demand. The
substitution can only occur if the new Web Service is service-
signature compliant (same WSDL description as there is no
service adaptor) and if the service to be replaced is in a sta-
ble state (not in a transaction, and without an initialisation
or one that does not impact on other partners).

To be compliant with the specifications, the core logic of
our BPEL engine (the visitor) should contain no Web Service
selection or replacement code. The solution is to set a hook
before service invocations (the invoke visit method) to add
these functionalities. In this way, services can be selected
and even replaced at post-deployment, as well as selection
policies.

3.3 Orthogonal concerns
It can be useful to enrich the core logic of the engine with

different concerns at post-implementation. In this way, the
engine is more modular, adaptable, and easy to maintain.
As some of the concerns can be impact-performant, such
as execution profiling or debugging, their corresponding as-
pects should be enabled to be woven or unwoven on demand
during execution. With these dynamic non-functional as-
pects, the engine can, for example, be controlled by agents
that monitor the execution and take actions if one service
provider is not responding. Such a concern can be useful es-
pecially for long running processes. We can also identify the
need for functional aspects between two service invocations
to perform local code execution such as converting the data
into another format.

We have defined an aspect BPEL-specific language using
XPath as a pointcut language to identify the join points
(matching the BPEL document) and Java as the advice lan-
guage3. In our first version, we have statically set hooks to
execute advices at all the potential join points; that is before
and after any BPEL instruction (visit method) such as in-

voke or receive, and at any process variable modification.
Plugging in an aspect means registering it on the current
process and also selecting the different nodes of the process
document (AST - Abstract Syntax Tree) identified by XPath
expressions to annotate them with the aspect name and the
name of the advice to execute. Before and after interpreting
an instruction, our system checks if there is any annotation
and calls the method to execute (advice) if this aspect is still
registered. Unweaving an aspect only means removing the
aspect from the registry.

3.4 Hot fixes applied to the workflow
For long running processes, adapting a workflow, accord-

ing to earlier results, by stopping it is not acceptable. There
is a need to modify, at runtime, the end of the workflow
by adding new computational instructions, and replacing or
deleting some instructions. This can also be seen as BPEL
aspects, using XPath to identify the join points but BPEL

3The implementation language of our engine is Java-based.

as the advice language (instead of Java for the aspects on
the engine). As these aspects act upon the workflow (func-
tional aspects) and have their advice in BPEL, we plan to
directly transform the process AST. These transformations
can only be applied to the workflow at some precise points
and under certain conditions that we need to identify to en-
sure the stability of the system. For example, deleting a
BPEL sequence can only occur if the engine has not started
interpreting it.

An important example of such hot-fixes is the composi-
tion, on demand, of a new Web Service and thus the addition
of its choreography interface. The dynamic aspect technol-
ogy is our solution to address dynamic composition of Web
Services: the choreography interface (BPEL instructions)
can be seen as advices and where to weave them as point-
cuts. Composing a new Web Service means transforming
the AST workflow to integrate the piece of its choreography
interface (BPEL advice). With this capability, the work-
flow can be extended to meet unforeseen post-deployment
requirements and user needs.

3.5 Architecture technical details
The core logic of our system (see Figure 1) is the BPEL

interpretor, implemented using the visitor design pattern.
It contains one visit method for each BPEL instruction and
traverses the typed structures, the BPEL trees, from top to
bottom. These trees are not only strictly typed to meet the
pattern requirements but are also based on the DOM API
to enable XPath selections of their nodes, which is useful for
the implementation of our BPEL aspect languages.

The code to handle the selection and replacement of Web
Services, and the engine aspects is represented as two as-
pects respectively that we can plug in or unplug from the
BPEL interpretor. In this way, the interpretor can be used
alone (faster) or extended, at runtime, with these function-
alities. Its code is independent from the BPEL aspect and
the Web Service selection code, and is compliant with the
BPEL specification. This possibility of plugging aspects is
due to our visitor design pattern implementation that checks
before and after each visit method call to see if some advices
need to be executed. More precisely, this check is done in the
visit method dispatcher (in our case, a generic visit method
instead of the different accept methods implemented in each
BPEL element class). More details about the visitor design
pattern implementation we are using can be found in [13].

The workflow aspect manager is also code independent
from the engine. It just needs to suspend the engine when
performing the transformations on the interpreted BPEL
document at some stable points and to get access to its data
environment to add or remove members (variables, partners,
etc.). Additionally, the annotations of the engine aspects al-
ready plugged in should be propagated onto any new BPEL
instruction added by insertion or replacement.

4. CONCLUSION
In this position paper, we argue that the visitor design

pattern and dynamic aspects can be used to implement an
extensible and adaptable BPEL engine, thus in SOAs. The
benefit of using the visitor design pattern is to write modular
code that is easy to extend by inheritance. This characteris-
tic, in the context of an extensible language such as BPEL, is
important so as to ease the incorporation of new instruction
behaviours into the interpreter. Involving aspects into the

AST

Engine aspect
repository

MyEngineAspect
...

<process ...>
 <partnerLinks></>
 <variables></>
 <faultHandlers></>
 <sequence>
 ...
 <invoke operation="treatData".../>
 ...
 </sequence>
</process>

class BPELEngine extends BPELTraversalVisitor {
 public visit(InvokeNode node) {...}
 public visit(ReceiveNode node) {...}
 ...
}

BPEL process

Parser

aspect MyWorkflowAspect {
 add/remove variable, partnerLink,
 partner, faultHandler, eventHandler,
 correlationSet, compensationHandler
 catch, catchAll in scope

 before //:invoke insert advice1
 after //.. insert advice2
 replace from //... to //... with advice3
 delete from //... to //...

 advice advice1
 <while condition="bpws:getVariableData(orders) > 100">
 ...
 </while>
}

Engine aspects

annotations

transformations

traversal

BPEL engine

Workflow aspects

Dynamic workflow
aspect manager

Dynamic engine
aspect manager

pointcuts of MyEngineAspect aspect {
 before //invoke[operation="treatData"] execute advice1
 after //invoke[operation="treatData"] execute advice2
}

class MyEngineAspect extends BPELAspect {
 public void advice1() {...}
 public void advice2() {...}
}

Members

Pointcuts

BPEL Advices

Web Service selection
and replacement manager

Partner selection
policy

Figure 1: Overview of the BPEL engine architecture

engine makes it possible to separate, in a modular way, the
different concerns, to focus only on its core logic in the first
place, and to rapidly integrate unforeseen concerns into it in
a non-invasive way. For greater flexibility, we have chosen
to have dynamic aspects to be able to weave and unweave
them into/from at runtime.

We also argue that dynamic aspect techniques can not
only be used in the engine itself but also on business pro-
cesses to address the well-known problems of Web Service
hot deployments and hot fixes. Additionally, we believe that
the BPEL engine should be customised with different selec-
tion policies as Web Service selection should be done after
deployment, and with Web Service replacement capability.

We have started the development of our system, using
SmartTools [13], a DSL (Domain-Specific Language) devel-
opment environment, to quickly prototype tools for our dif-
ferent languages (BPEL, the engine aspect language, and
the workflow aspect language). Later, we will need to re-
fine our aspect languages by identifying which pointcuts are
needed for advices either in BPEL (for the hot fixes such
as the choreography interface compositions) or in Java (for
orthogonal concerns).

5. ACKNOWLEDGEMENTS
The authors want to thank David Lesaint and George

Papamargaritis from BT Exact for the fruitful discussions,
as well as Ben Butchart from UCL.

6. REFERENCES
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,

J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,

S. Thatte, and I. Trickovic. Business Process
Execution Language for Web Services version 1.1.
Technical report, BEA, IBM, Microsoft, SAP, Siebel
Systems, May 2003.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[2] B. Bachmendo and R. Unland. Aspect-Based
Workflow Evolution. In Tutorial and Workshop on
Aspect-Oriented Programming and Separation of
Concerns, Lancaster, UK, August 2001.
http://www.comp.lancs.ac.uk/computing/users/marash/aopws2001/papers/bachmendo.pdf.

[3] J. Baker and W. Hsieh. Runtime Aspect Weaving
Through Metaprogramming. In First International
Conference on Aspect-Oriented Software Development,
pages 86–95, Enschede, The Netherlands, April 2002.
ACM.
http://www.cs.utah.edu/~wilson/papers/handiwrap-aosd02.pdf.

[4] G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. Making the future safe for the past:
Adding Genericity to the Java Programming
Language. In Proceedings of OOPSLA’98, Vancouver,
Canada, October 1998. ACM Press.
http://www.cis.unisa.edu.au/~pizza/gj/Documents/gj-oopsla.pdf.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley Pub Co, January
1995. ISBN 0201633612.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knuden, editor, Proceedings of
European Conference on Object-Oriented
Programming, volume 2072 of LNCS, pages 327–355,
Budapest, Hungary, June 2001.

http://www.cs.ubc.ca/~gregor/kiczales-ECOOP2001-AspectJ.pdf.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira, and J.-M. Loingtier. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242, Jyväskylä, Finland, June 1997.
Springer-Verlag.
http://www.cs.ubc.ca/~gregor/kiczales-ECOOP1997-AOP.pdf.

[8] D. J. Mandell and S. A. McIlraith. Adapting
BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation. In D. Fensel,
K. Sycara, and J. Mylopoulos, editors, Proceedings of
the Second International Semantic Web Conference,
number to appear in LNCS, Sanibel Island, USA,
October 2003. Springer-Verlag.
http://www.ksl.stanford.edu/people/sam/iswc2003sam-djm-FINAL.pdf.

[9] T. D. S. C. D. Martin, M. Burstein, G. Denker,
J. Hobbs, L. Kagal, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara.
DAML-S: Semantic Markup For Web Services 0.9,
2003. white paper available online at
http://www.daml.org/services/daml-s/0.9/daml-s.pdf.

[10] N. Mukhi. Reference guide for creating BPEL4WS
documents. Technical report, IBM, November 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpws4jed/.

[11] A. Olivia and L. E. Buzato. The Design and
Implementation of Guaraná. In Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’99), San Diego, USA, May
1999.
http://www.ic.unicamp.br/~oliva/guarana/docs/desimpl.ps.gz.

[12] J. Palsberg and C. B. Jay. The Essence of the Visitor
Pattern. In Proceedings of COMPSAC’98, 22nd
Annual International Computer Software and
Applications Conference, pages 9–15, Vienna, Austria,
August 1998.
http://www.cs.ucla.edu/~palsberg/paper/compsac98.pdf.

[13] D. Parigot, C. Courbis, P. Degenne, A. Fau,
C. Pasquier, J. Fillon, C. Held, and I. Attali. Aspect
and xml-oriented semantic framework generator:
Smarttools. In M. van den Brand and R. Lämmel,
editors, ETAPS’2002, LDTA workshop, volume 65 of
Electronic Notes in Theoretical Computer Science
(ENTCS), Grenoble, France, April 2002. Elsevier
Science.
http://www.elsevier.nl/gej-ng/31/29/23/117/52/33/65.3.009.pdf.

[14] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A Flexible Solution for Aspect-Oriented
Programming in Java. In A. Yonezawa and
S. Matsuoka, editors, Metalevel Architectures and
Separation of Crosscutting Concerns: Third
International Conference, Reflection’01, volume 2192
of LNCS, pages 1–24, Kyoto, Japan, September 2001.
http://jac.aopsys.com/papers/reflection.ps.

[15] A. Popovici, G. Alonso, and T. Gross. Just-In-Time
Aspects: Efficient Dynamic Weaving for Java. In
Proceedings of the 2nd international conference on
Aspect-Oriented Software Development, pages
100–109, Boston, USA, March 2003. ACM Press.
http://www.lst.inf.ethz.ch/research/publications/publications/AOSD_2003/AOSD_2003.pdf.

[16] Y. Sato, S. Chiba, and M. Tatsubori. A Selective,
Just-in-Time Aspect Weaver. In Springer-Verlag,
editor, Proceedings of Generative Programming and
Component Engineering (GPCE’03), number 2830 in
LNCS, pages 189–208, Erfurt, Germany, September
2003.
http://www.research.ibm.com/trl/people/mich/pub/200306_gpce2003.pdf.

[17] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic
Composition of Web Services using Semantic
Descriptions. In ICEIS2003, Web Services: Modeling,
Architecture and Infrastuture workshop, Angers,
France, April 2003. ICEIS Book.
http://www.mindswap.org/papers/composition.pdf.

[18] V. Tosic, B. Pagurek, and K. Patel. WSOL - A
Language for the Formal Specification of Various
Constraints and Classes of Service for Web Service. In
The International Conference On Web Services,
ICWS’03, pages 375–381, Las Vegas, USA, June 2003.
CSREA Press.
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf.

[19] J. Whaley. Joeq: A Virtual Machine and Compiler
Infrastructure. In The Workshop on Interpreters,
Virtual Machines, and Emulators, pages 58–66, San
Diego, USA, June 2003. ACM SIGPLAN 2003.
http://www.stanford.edu/~jwhaley/papers/ivme03.pdf.

